4 Mutually Tangent Circles

text item
4 Mutually Tangent Circles

Circle centered at A has radius `R_1.`  Curvature is `k_1 = 1/R_1.` 

Circle centered at B has radius `R_2.`  Curvature is `k_2 = 1/R_2.` 

Circle centered at C has radius `R_3.`  Curvature is `k_3 = 1/R_3.` 

`A = (0,R_1)` 

`B=(0,-R_2)` 

Coordinates of `C = (x,y)`  can be calculated as follows

The area of triangle ABC can be calculated 2 ways

`A= 1/2(R_1+R_2)x = sqrt((R_1+R_2+R_3)R_1R_2R_3)` 

 `x = 2sqrt((R_1+R_2+R_3)R_1R_2R_3)/(R_1+R_2)` 

To calculate the y coordinate we look at the distances from A to C and from B to C.

`x^2+(y-R_1)^2 = (R_1+R_3)^2` 

`x^2+(y+R_2)^2 = (R_2+R_3)^2` 

Solve simultaneously

`(y+R_2)^2-(y-R_1)^2 = (R_2+R_3)^2-(R_1+R_3)^2` 

`y^2+2R_2y+R_2^2-y^2+2R_1y-R_1^2=R_2^2+2R_2R_3+R_3^2-R_1^2-2R_1R_3-R_3^2` 

`2y(R_2+R_1) = 2R_3(R_2-R_1)` 

`y=R_3(R_2-R_1)/(R_2+R_1)` 

Recap

 `A= (0,R_1)=(0,1/k_1)`

 `B=(0,-R_2)=(0,-1/k_2)`

`C= (2sqrt((R_1+R_2+R_3)R_1R_2R_3)/(R_1+R_2),R_3(R_2-R_1)/(R_2+R_1))` 

Convert C from radii to curvatures

`C= (2sqrt((R_1+R_2+R_3)R_1R_2R_3)/(R_1+R_2),R_3(R_2-R_1)/(R_2+R_1))` 

 `= (2sqrt((1/k_1+1/k_2+1/k_3)1/k_1 1/k_2 1/k_3)/(1/k_1+1/k_2),1/k_3(1/k_2-1/k_1)/(1/k_2+1/k_1))` 

 `= (2sqrt((k_2k_3+k_1k_3+k_1k_2)/(k_1k_2k_3)1/(k_1k_2k_3))/((k_2+k_1)/(k_1k_2)),1/k_3((k_1-k_2)/(k_1k_2))/((k_2+k_1)/(k_1k_2)))` 

 `= ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/(k_3(k_2+k_1)),(k_1-k_2)/(k_3(k_2+k_1)))` 

Now, D is a linear combination of A and C

 `D = R_3/(R_1+R_3)A+R_1/(R_1+R_3)C` 

`D = (1/k_3)/(1/k_1+1/k_3)A+(1/k_1)/(1/k_1+1/k_3)C` 

 `D = (k_1)/(k_1+k_3)A+(k_3)/(k_1+k_3)C` 

 `D = (k_1)/(k_1+k_3)(0,1/k_1)+(k_3)/(k_1+k_3) ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/(k_3(k_2+k_1)),(k_1-k_2)/(k_3(k_2+k_1)))` 

 `D = ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/((k_1+k_3)(k_2+k_1)),1/(k_1+k_3)+(k_1-k_2)/((k_1+k_3)(k_2+k_1)))` 

 `D = ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/((k_1+k_3)(k_2+k_1)),(2k_1)/((k_1+k_3)(k_2+k_1)))` 

Likewise E is a linear combination of B and C

 `E = R_3/(R_2+R_3)B+R_2/(R_2+R_3)C` 

 `E = (1/k_3)/(1/k_2+1/k_3)B+(1/k_2)/(1/k_2+1/k_3)C` 

 `E = (k_2)/(k_2+k_3)A+(k_3)/(k_2+k_3)C` 

 `E = (k_2)/(k_2+k_3)(0,-1/k_2)+(k_3)/(k_2+k_3) ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/(k_3(k_2+k_1)),(k_1-k_2)/(k_3(k_2+k_1)))` 

 `E = ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/((k_2+k_3)(k_2+k_1)),-1/(k_2+k_3)+(k_1-k_2)/((k_2+k_3)(k_2+k_1)))` 

 `E = ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/((k_2+k_3)(k_2+k_1)),(-2k_2)/((k_2+k_3)(k_2+k_1)))` 

We now use an inversion across the unit circle.

The circle centered at A goes to the line `y=1/(2R_1)=1/2k_1` 

The circle centered at B goes to the line `y=-1/(2R_2)=-1/2k_2` 

Since D is on the circle centered at A we know that its image D' will have a y coordinate of `1/2k_1.` 

 `D' = 1/2k_1*1/D_y((2sqrt(k_2k_3+k_1k_3+k_1k_2))/((k_1+k_3)(k_2+k_1)),(2k_1)/((k_1+k_3)(k_2+k_1)))` 

 `D' = ((sqrt(k_2k_3+k_1k_3+k_1k_2))/(2),1/2k_1)` 

Likewise E is on the circle centered at B, so we know that its image E' will have a y coordinate of `-1/2k_2.` 

 `E' = -1/2k_2*1/E_y ((2sqrt(k_2k_3+k_1k_3+k_1k_2))/((k_2+k_3)(k_2+k_1)),(-2k_2)/((k_2+k_3)(k_2+k_1)))` 

 `E' = ((sqrt(k_2k_3+k_1k_3+k_1k_2))/(2),-1/2k_2)` 

It is important to notice that the x-coordinates of D' and E' are the same.  This makes sense when we note that the circle centered at C is being transformed into a circle that is tangent to the two lines `y=1/2k_1`  and `y=-1/2k_2,`  with D' as E' the points of tangency.

The center of this transformed circle is at ` ((sqrt(k_2k_3+k_1k_3+k_1k_2))/(2),1/4(k_1-k_2))` 

The center of the transformed 4th circle is at  ` Q' = ((sqrt(k_2k_3+k_1k_3+k_1k_2))/(2) + 1/2(k_1+k_2),1/4(k_1-k_2))` and the radius is `r=1/4(k_1+k_2).` 

Let `h = abs(Q').` 

The point on the transformed 4th circle that is farthest from the origin is at a distance of `h+r.`  So, the closest point to the origin on circle 4 is at a distance of `1/(h+r).` 

The point on the transformed 4th circle that is closest to the origin is at a distance of `h-r.`  So, the farthest point from the origin on circle 4 is at a distance of `1/(h-r).` 

This means that `r_4 = 1/2(1/(h-r)-1/(h+r))= ((h+r)-(h-r))/(2(h+r)(h-r)) = r/(h^2-r^2).` 

 `r_4 =(1/4(k_1+k_2))/( ((sqrt(k_2k_3+k_1k_3+k_1k_2))/(2) + 1/2(k_1+k_2))^2+(1/4(k_1-k_2))^2-(1/4(k_1+k_2)^2))` 

 `r_4 =(4(k_1+k_2))/( (2sqrt(k_2k_3+k_1k_3+k_1k_2) + 2(k_1+k_2))^2+(k_1-k_2)^2-(k_1+k_2)^2)` 

 `r_4 =(4(k_1+k_2))/( (2sqrt(k_2k_3+k_1k_3+k_1k_2) + 2(k_1+k_2))^2-4k_1k_2)` 

 `r_4 =((k_1+k_2))/( (sqrt(k_2k_3+k_1k_3+k_1k_2) + (k_1+k_2))^2-k_1k_2)` 

 `r_4 =((k_1+k_2))/( k_2k_3+k_1k_3+k_1k_2 +2(k_1+k_2)sqrt(k_2k_3+k_1k_3+k_1k_2) + (k_1+k_2)^2-k_1k_2)` 

 `r_4 =((k_1+k_2))/( k_2k_3+k_1k_3 +2(k_1+k_2)sqrt(k_2k_3+k_1k_3+k_1k_2) + (k_1+k_2)^2)` 

 `r_4 =((k_1+k_2))/( (k_1+k_2)(k_3 +2sqrt(k_2k_3+k_1k_3+k_1k_2) + (k_1+k_2))` 

 `r_4 =1/(k_1+k_2+k_3 +2sqrt(k_2k_3+k_1k_3+k_1k_2))` 

Note: this formula is symmetric in `k_1,`  `k_2,`  and `k_3.` 

It looks better as

 `k_4 =k_1+k_2+k_3 +2sqrt(k_2k_3+k_1k_3+k_1k_2)` 


This is the publicly accessible content from a course on WAMAP. There may be additional content available by logging in