
What the h?

What the h?
Definition
Given a function `f(x)` we define the derivative of `f(x)` at `x=a` as
`f'(a) = lim_(x to a) (f(x)-f(a))/(x-a)`
Definition
Given a function `f(x)` we define the derivative of `f(x)` as
`f'(x) = lim_(h to 0) (f(x+h)-f(x))/h`
EG
`f(x) = x^2` find `f'(3)`
Method 1
`f'(3) = lim_(x to 3) (f(x)-f(3))/(x-3)`
`=lim_(x to 3) (x^2-3^2)/(x-3)`
`=lim_(x to 3) ((x+3)(x-3))/(x-3)`
`=lim_(x to 3) x+3`
`= 6`
Method 2
`f'(3) = lim_(h to 0) (f(3+h)-f(3))/h`
` =lim_(h to 0) ((3+h)^2-3^2)/h`
` =lim_(h to 0) (9+6h+h^2-9)/h`
` =lim_(h to 0) (6h+h^2)/h`
` =lim_(h to 0) (h(6+h))/h`
` =lim_(h to 0) 6+h`
` =6`
Method 3
`f'(x) = lim_(h to 0) (f(x+h)-f(x))/h`
` =lim_(h to 0) ((x+h)^2-x^2)/h`
` =lim_(h to 0) (x^2+2xh+h^2-x^2)/h`
` =lim_(h to 0) (2xh+h^2)/h`
` =lim_(h to 0) (h(2x+h))/h`
` =lim_(h to 0) 2x+h`
` =2x`
So, `f'(3) = 2*3=6`
What method would you rather do?
The students always ask "How do I decide what method to use?"
My answer has always been "If you want the derivative at just one known point then use the first definition. If you will want to know it at many points (or you don't know what point you want yet) then use the second definition."
But honestly, I would rather use the first definition all the time. So let's.
Definition
Given a function `f(x)` we define the derivative of `f(x)` at `x=a` as
`f'(a) = lim_(x to a) (f(x)-f(a))/(x-a)`
Definition
Given a function `f(x)` we define the derivative of `f(x)` as
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
EG
`f(x) = x^2`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (x^2-a^2)/(x-a)`
`f'(x) = lim_(a to x) ((x-a)(x+a))/(x-a)`
`f'(x) = lim_(a to x) (x+a)`
`f'(x) = x+x=2x`
EG
`f(x) = x^3`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (x^3-a^3)/(x-a)`
`f'(x) = lim_(a to x) ((x-a)(x^2+xa+a^2))/(x-a)`
`f'(x) = lim_(a to x) (x^2+xa+a^2)`
`f'(x) = x^2+x^2+x^2`
`f'(x) = 3x^2`
EG
`f(x) = x^n`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (x^n-a^n)/(x-a)`
`f'(x) = lim_(a to x) ((x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2+ cdots +xa^(n-2)+a^(n-1)))/(x-a)`
`f'(x) = lim_(a to x) (x^(n-1)+x^(n-2)a+x^(n-3)a^2+ cdots +xa^(n-2)+a^(n-1))`
`f'(x) = x^(n-1)+x^(n-2)x+x^(n-3)x^2+ cdots +x* x^(n-2)+x^(n-1)`
`f'(x) = n x^(n-1)`
EG
`f(x) = sqrt(x)`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (sqrt(x)-sqrt(a))/(x-a)`
`f'(x) = lim_(a to x) (sqrt(x)-sqrt(a))/((sqrt(x)-sqrt(a))(sqrt(x)+sqrt(a)))`
`f'(x) = lim_(a to x) (1)/(sqrt(x)+sqrt(a))`
`f'(x) = (1)/(sqrt(x)+sqrt(x))`
`f'(x) = (1)/(2sqrt(x))`
EG
`f(x) = 1/x`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (1/x-1/a)/(x-a)`
`f'(x) = lim_(a to x) ((1/x-1/a)/(x-a))((ax)/(ax))`
`f'(x) = lim_(a to x) (a-x)/((x-a)(ax))`
`f'(x) = lim_(a to x) (-1(x-a))/((x-a)(ax))`
`f'(x) = lim_(a to x) (-1)/(ax)`
`f'(x) = (-1)/(x^2)`
EG
`f(x) = b^x`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (b^x-b^a)/(x-a)` --> Note: `f'(0) = lim_(a to 0) (b^0-b^a)/(0-a)= lim_(a to 0) (1-b^a)/(-a)`
`f'(x) = lim_(a to x) (b^x((1-b^(a-x))/(x-a)))`
`f'(x) = b^x lim_(a to x) (1-b^(a-x))/(x-a)`
`f'(x) = b^x lim_(theta to 0) (1-b^(theta))/(-theta)` where `theta = a-x`
`f'(x) = b^x f'(0)`
EG
`f(x) = sin(x)`
`f'(x) = lim_(a to x) (f(x)-f(a))/(x-a)`
`f'(x) = lim_(a to x) (sin(x)-sin(a))/(x-a) `
`f'(x) = lim_(a to x) (2cos((x+a)/2)sin((x-a)/2))/(x-a)`
`f'(x) = (lim_(a to x) cos((x+a)/2))(lim_(a to x)(sin((x-a)/2))/((x-a)/2))`
`f'(x) = cos(x)(lim_(theta to 0)(sin(theta))/(theta) )` where `theta = (x-a)/2`
`f'(x) = cos(x)`
EG
`Sum(x) = f(x)+g(x)`
`Sum'(x) = lim_(a to x) (Sum(x)-Sum(a))/(x-a)`
`Sum'(x) = lim_(a to x) (f(x)+g(x)-(f(a)+g(a)))/(x-a) `
`Sum'(x) = lim_(a to x) (f(x)-f(a)+g(x)-g(a))/(x-a) `
`Sum'(x) = lim_(a to x) ((f(x)-f(a))/(x-a)+(g(x)-g(a))/(x-a) )`
`Sum'(x) = lim_(a to x) (f(x)-f(a))/(x-a) +lim_(a to x) (g(x)-g(a))/(x-a) `
`Sum'(x) = f'(x)+g'(x)`
This is the publicly accessible content from a course on WAMAP. There may be additional content available by logging in